skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Yanli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the past decades, China has witnessed high air pollution associated with rapid economic development, although regulatory efforts have alleviated the situation since 2013. Haze events characterized by high particulate matter (PM) levels in China are not only of enormous magnitude but also represent a distinct chemical regime. Once driven by direct emissions, these high-PM episodes are now more affected by secondary aerosol, especially secondary organic aerosol (SOA). This Review synthesizes the state of the science of SOA formation in urban China, specifically (i) how the dominance of anthropogenic precursors affects SOA formation, (ii) what are the prevailing SOA formation mechanisms, and (iii) how important are the multipollutant and multiphase processes in SOA formation and evolution. We also highlight essential directions for future studies. 
    more » « less
    Free, publicly-accessible full text available August 28, 2026
  2. null (Ed.)
  3. null (Ed.)
    Abstract. Mixing ratios of volatile organic compounds (VOCs) were recordedin two field campaigns in central Beijing as part of the Air Pollution andHuman Health in a Chinese Megacity (APHH) project. These data were used tocalculate, for the first time in Beijing, the surface–atmosphere fluxes ofVOCs using eddy covariance, giving a top-down estimation of VOC emissionsfrom a central area of the city. The results were then used to evaluate theaccuracy of the Multi-resolution Emission Inventory for China (MEIC). TheAPHH winter and summer campaigns took place in November and December 2016and May and June 2017, respectively. The largest VOC fluxes observed were ofsmall oxygenated compounds such as methanol, ethanol + formic acid andacetaldehyde, with average emission rates of 8.31 ± 8.5, 3.97 ± 3.9 and 1.83 ± 2.0 nmol m−2 s−1, respectively, in the summer.A large flux of isoprene was observed in the summer, with an average emissionrate of 5.31 ± 7.7 nmol m−2 s−1. While oxygenated VOCs madeup 60 % of the molar VOC flux measured, when fluxes were scaled by ozoneformation potential and peroxyacyl nitrate (PAN) formation potential thehigh reactivity of isoprene and monoterpenes meant that these speciesrepresented 30 % and 28 % of the flux contribution to ozone and PANformation potential, respectively. Comparison of measured fluxes with theemission inventory showed that the inventory failed to capture the magnitudeof VOC emissions at the local scale. 
    more » « less